%%HP: T(3)A(D)F(.); @ PROB, by Brian Korver DIR COMBNATION \<< \-> N R 'N!/(R! *(N-R)!)' \>> BANG \<< \-> X 'FACT(X)' \>> Bin \<< 'COMB(n,I)*p^ I*(1-p)^(n-I)' "Binomial Mass Function. Enter n p i" { ALG V } INPUT OBJ\-> \-> n p I \<< \->STR STR\-> EVAL "P{X=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Bin.D \<< '\GS(x=0,I,COMB (n,x)*p^x*(1-p)^(n- x))' "Binomial Distribution Function. Enter n p i" { ALG V } INPUT OBJ\-> \-> n p I \<< \->STR STR\-> EVAL "P{X\<=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Pois \<< 'EXP(-L)*L^I/ I!' "Poisson Mass Function. Enter \Gl (or 'n*p') i" { ALG V } INPUT OBJ\-> \-> L I \<< \->STR STR\-> \->NUM "P{X=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Pois.D \<< '\GS(x=0,I,EXP( -L)*L^x/x!)' "Poisson Distribution Function. (ok \Gl<200?) Enter \Gl (or 'n*p') i" { ALG V } INPUT OBJ\-> \-> L I \<< \->STR STR\-> \->NUM "P{X\<=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Geom \<< 'p*(1-p)^(n-1 )' "Geometric Mass Function. Enter n p" { ALG V } INPUT OBJ\-> \-> n p \<< \->STR STR\-> \->NUM "P{X=" RCLF STD SWAP n 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> NBin \<< 'COMB(n-1,r-1 )*p^r*(1-p)^(n-r)' "Negative Binomial Mass Function. Enter n p r" { ALG V } INPUT OBJ\-> \-> n p r \<< \->STR STR\-> \->NUM "P{X=" RCLF STD SWAP n 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Hyper \<< 'COMB(N*p,I)* COMB(N-N*p,n-I)/ COMB(N,n)' "Hypergeometric Mass Function. Enter N n p i" { ALG V } INPUT OBJ\-> \-> N n p I \<< \->STR STR\-> \->NUM "P{X=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Normal \<< "Normal Distribution Unit Transformation. Enter \Gm \Gs x" { ALG V } INPUT OBJ\-> \-> m s x \<< "P{X\<=" RCLF STD SWAP x 4 RND + "}=\O/(" + '(x-m)/s' EVAL DUP 3 ROLLD 3 RND + ")=" + SWAP 2 RND 4 FIX 0 1 ROT UTPN NEG 1 + DUP \-> HLD \<< + SWAP STOF HLD \>> \>> \>> UNorm.D \<< "Unit Normal Distribution. Enter z" { ALG V } INPUT OBJ\-> \-> Z \<< "P{Z\<=" RCLF STD SWAP Z 4 RND + "}=" + 4 FIX 0 1 '- RND(Z,2)' \->NUM UTPN + SWAP STOF \>> \>> DeMoivre.Laplace \<< "DeMoivre-Laplace Distribution. Enter n p a b" { ALG V } INPUT OBJ\-> \-> n p a b \<< 'n*p' EVAL '\v/(n*p*(1-p))' EVAL \-> m s \<< "'\O/(" '(b +.5-m)/s' EVAL \->NUM 3 RND + ")-\O/(" + '( a-.5-m)/s' EVAL \->NUM 3 RND + ")=" + 0 1 '(b+.5-m)/s' \->NUM 2 RND UTPN NEG 1 + 0 1 '(a-.5-m)/s ' \->NUM 2 RND UTPN NEG 1 + - + "'" + OBJ\-> \>> \>> \>> Exp.D \<< '1-EXP(-L*I)' "Exponential Distribution Function. (\Gl=1/\Gm) Enter \Gl i" { ALG V } INPUT OBJ\-> \-> L I \<< \->STR STR\-> \->NUM "P{X<" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Gam.D \<< '1-EXP(-L*I)* \GS(K=0,T-1,INV(K!)*( L*I)^K)' "Gamma Distribution Function. Enter \Gl t i" { ALG V } INPUT OBJ\-> \-> L T I \<< \->STR STR\-> \->NUM "P{X<" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Weibull \<< 'B/A*((X-V)/A )^(B-1)*EXP(-((X-V)/A)^B)' "Weibull Density Function. Enter \Ga \Gb v i" { ALG V } INPUT OBJ\-> \-> A B V I \<< \->STR STR\-> \->NUM "P{X=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Weib.D \<< '1-EXP(-((I-V )/A)^B)' "Weibull Distribution Function. Enter \Ga \Gb v i" { ALG V } INPUT OBJ\-> \-> A B V I \<< \->STR STR\-> \->NUM "P{X<" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Cauc.D \<< '.5+INV(\pi)* ATAN(I-T)' "Cauchy Distribution Function. Enter \Gh i" { ALG V } INPUT OBJ\-> \-> T I \<< \->STR STR\-> \->NUM "P{X<" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> Beta \<< 'FACT(A+B-1)/ (FACT(A-1)*FACT(B-1 ))*I^(A-1)*(1-I)^(B -1)' "Beta Density Function. Enter a b i" { ALG V } INPUT OBJ\-> \-> A B I \<< \->STR STR\-> \->NUM "P{X=" RCLF STD SWAP I 4 RND + SWAP STOF "}=" + SWAP 4 RND + \>> \>> END